Exercices**** continuité -derivee-fonctions**** www.0et1.com

Exercice 1

Soit la fonction
$$f$$
 définie sur IR par $f(x) = \begin{cases} \frac{x + \cos(\pi x)}{x - 1} & \text{si } x < 1 \\ \sqrt{x^2 + 3} - 1 & \text{si } x \ge 1 \end{cases}$

On désigne par (\Im) la courbe représentative de f sur un repère orthonormée ($0; \vec{i}, \vec{j}$) du plan.

1)a)Montrer que
$$\lim_{x\to 1^-} f(x) = 1$$
 (On vous donne $\lim_{x\to 1^-} \frac{1+\cos(\pi x)}{x-1} = 0$)

- b)En déduire que f continue en 1
- c) Montrer que f est continue sur IR

2)a) Vérifier que pour tout
$$x \in]-\infty; 1[; \frac{x+1}{x-1} \le f(x) \le 1]$$

- b) En déduire que la droite d'équation y = 1 est une asymptote à (\mathcal{C}) au voisinage de $-\infty$
- 3)a) Calculer $\lim_{x \to +\infty} f(x)$
- b) Montrer que $\lim_{x\to +\infty} f(x) x = -1$, interpréter graphiquement le résultat obtenu.
- 4) a) Montrer que l'équation f(x) = 0 admet au moins une solution α dans $\left[-\frac{1}{2}, 0\right]$
- b) Montrer que $\sin(\pi \alpha) = -\sqrt{1 \alpha^2}$

Exercice 2

Pour chacune des questions suivantes, une seule réponse proposée est exacte.

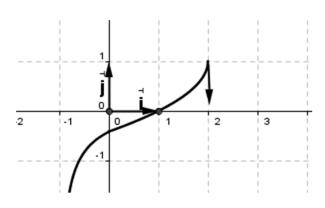
1) Soit f une fonction continue sur \mathbb{R} tel que f (1)=2 alors

a)
$$\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = +\infty$$
 b) $\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 2$ c) $\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 1$

b)
$$\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 2$$

c)
$$\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 1$$

- 2) f une fonction dérivable sur \mathbb{R} vérifiant f'(2) = 0 alors :
- a) La courbe de f admet une tangente horizontale au point d'abscisse 2.
- b) La courbe de f admet une tangente vertical au point d'abscisse 2.
- c)La courbe de f admet nécessairement un extremum au point d'abscisse 2.
- 3) La courbe ci-dessous est celle d'une fonction continue sur]-1,2]



a)
$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = -\infty$$
 b) $\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = +\infty$ c) $\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = 2$

b)
$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = +\infty$$

c)
$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = 2$$

Exercice 3

Dans chacun des cas suivants déterminer le domaine de dérivabilité de f et sa fonction dérivée f

$$1)f(x) = \sqrt{x^4 + 5x^2}$$

$$2)f(x) = \left(x^2 + \sqrt{x}\right)^{-5}$$

$$3)f(x) = (x-1)(x+3)^4$$

4)
$$f(x) = \frac{x\sqrt{x+1}}{x^2+1}$$

Exercice 4

Soit f la fonction définie sur $[0, +\infty]$ par

$$\begin{cases} f(x) = \frac{\sqrt{1+x^2} - 1}{x} \text{ si } x > 0\\ f(0) = 0 \end{cases}$$

1)a)Vérifier que pour tout x > 0 on a : $f(x) = \frac{x}{\sqrt{1+x^2+1}}$, En déduire que f est continue a droite en 0

b) Montrer que f est dérivables à droite en 0.

2)a)Montrer que pour tout
$$x > 0$$
 on a : $f(x) = \frac{1}{\sqrt{\frac{1}{x^2} + 1} + \frac{1}{x}}$

b) Déduire alors $\lim_{x \to \infty} f(x)$ puis interpréter graphiquement le résultat

3)a)Montrer que
$$f$$
 est dérivable sur]0, $+\infty$ [et que $f'(x) = \frac{\sqrt{x^2 + 1} - 1}{x^2 \sqrt{x^2 + 1}}$

b) Dresser le tableau de variation de f sur $[0, +\infty[$

c) Montrer que f admet une fonction réciproque définie sur un intervalle I que l'on précisera

d) Calculer f(1), en déduire $(f^{-1})'(\sqrt{2}-1)$