Rotations 1sm2

I. Définition

Activité

1) Etant donnés deux points distincts I et A du plan, construire, s'il existe, un point A' tel que :

$$\begin{cases} IA' = IA \\ (\overrightarrow{IA}, \overrightarrow{IA'}) = \frac{\pi}{2} [2\pi] \end{cases}$$
. Le point A' est il unique ?

2) Etant donnés un point I du plan et un réel α , Montrer que pour tout point M distinct de I, il existe

un point M' unique tel que :
$$\begin{cases} IM' = IM \\ (\overrightarrow{IM}, \overrightarrow{IM'}) \equiv \alpha [2\pi] \end{cases}$$

Que peut on dire de M' pour $\alpha = 2k\pi$ puis pour $\alpha = \pi + 2k\pi$ ($k \in \mathbb{Z}$) ?

Définition

Soient I un point du plan et α un réel donné.

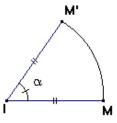
L'application du plan P dans lui même qui à tout point M associe le point M' défini comme suit :

$$\triangleright$$
 Si M = I alors M' = I

> Si M
$$\neq$$
 I alors M' vérifie
$$\begin{cases} IM' = IM \\ (\overrightarrow{IM}, \overrightarrow{IM'}) \equiv \alpha [2\pi] \end{cases}$$

est appelée rotation de centre I et d'angle α , on la note : $R_{(I,\alpha)}$.

On a ainsi pour tout
$$M \neq I$$
, $M' = R_{(I,\alpha)}(M) \Leftrightarrow \begin{cases} IM' = IM \\ (\overrightarrow{IM}, \overrightarrow{IM'}) \equiv \alpha [2\pi] \end{cases}$



Cas particuliers

Reconnaître R dans les cas où $\alpha \equiv 0 \big[2\pi \big]$ et $\alpha \equiv \pi \big[2\pi \big]$

Exercice N°1

On considère un carré ABCD de sens direct et de centre O.Déterminer les images des points A, B, C et D par :

- 1) La rotation de centre O et d'angle $\frac{\pi}{2}$.
- 2) La rotation de centre O et d'angle $\frac{\pi}{2}$

Exercice N°2

Construire le centre I d'une rotation d'angle $\frac{\pi}{2}$ et transformant un point A en un point A' (A' \neq A)

II. Propriétés

Soir r la rotation de centre I et d'angle α .

- 1) On sait que R(I) = I; on suppose qu'il existe un point $M \neq I$ invariant par R.
 - a) Evaluer $(\overrightarrow{IM}, \overrightarrow{IM}')$.
 - b) En déduire la propriété suivante :

(Propriété 1): Toute rotation d'angle non nul admet son centre comme unique point invariant.

2) Soit M un point distinct de I.

$$R(M) = M' \Leftrightarrow \begin{cases} IM' = IM \\ (\overrightarrow{IM}, \overrightarrow{IM'}) \equiv \alpha \left[2\pi\right] \end{cases} \Leftrightarrow \begin{cases} IM = IM' \\ (\overrightarrow{IM'}, \overrightarrow{IM}) \equiv -\alpha \left[2\pi\right] \end{cases} \Leftrightarrow R'(M') = M \text{ ; où r' est la}$$

rotation de même centre I et d'angle -α.

(Propriété 2):

Toute rotation est une bijection du plan dans lui même dont la réciproque est une rotation de même centre et d'angle opposé.

III. Rotations et symétries orthogonales

1) Composée de deux symétries orthogonales

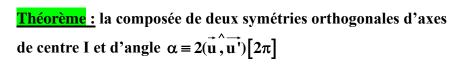
Activité

On considère deux droites Δ et Δ ' sécantes en un point I et de vecteurs directeurs respectifs \vec{u} et \vec{u} '.

On pose
$$\theta = (\overrightarrow{u}, \overrightarrow{u}) [\pi]$$
.

Soit M un point du plan distinct de I, on pose $M_1 = S_{\Delta}(M)$ et $M' = S_{\Delta'}(M_1)$.

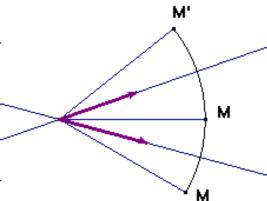
- a) Que représente M' pour le point M?
- b) Exprimer $(\overrightarrow{IM}, \overrightarrow{IM}')$ en fonction de θ et en déduire que M' est l'image de M par la rotation de centre I et d'angle 2θ .



Exercice N°3

Avec les données précédent

- a) Caractériser S_{Δ} o S_{Δ} dans le cas où $\Delta \perp \Delta$
- b) Etablir l'équivalence : $S_{\Delta'} \circ S_{\Delta} = S_{\Delta} \circ S_{\Delta'} \iff \Delta \perp \Delta'$



M'

Δ'

М

Exercice N°4

On considère un carré ABCD de sens direct et de centre O, caractériser chacune des applications suivantes :

$$f = S_{(AC)} \circ S_{(AB)}$$

$$g = S_{(OA)} \circ S_{(BC)}$$

$$h = S_{(AC)} \circ S_{(BD)}$$

$$k = S_{(DB)} \circ S_{(AD)}$$

2) Décomposition d'une rotation en une composée de deux symétries orthogonales

Considérons une rotation R de centre I et d'angle α .

Soit Δ une droite passant par I et de vecteur directeur \overrightarrow{u} , on considère la droite Δ ' passant par I et de vecteur directeur \overrightarrow{u} ' tel que : $(\overrightarrow{u}, \overrightarrow{u}) \equiv \frac{\alpha}{2} [\pi]$.

Caractériser S_{Δ} , oS_{Δ} .

Théorème

Toute rotation de centre I et d'angle α se décompose, d'une infinité de manières, sous la forme :

$$\mathbf{r} = \mathbf{S}_{\Delta'} \mathbf{o} \mathbf{S}_{\Delta} \ \mathbf{o} \mathbf{\hat{u}} \ \Delta \ \mathbf{e} \mathbf{t} \ \Delta' \ \mathbf{sont} \ \mathbf{deux} \ \mathbf{droites} \ \mathbf{v\'erifiant} : \begin{cases} \Delta \cap \Delta' = \left\{I\right\} \\ (\vec{u}, \vec{u}') \equiv \frac{\alpha}{2} \left[\pi\right] \end{cases}$$

 $(\vec{u} \text{ et } \vec{u'} \text{ étant des vecteurs directeurs respectifs de } \Delta \text{ et } \Delta')$.

Exercice N°5

On considère un carré ABCD de sens direct et on désigne par R_A , R_B , R_C et R_D les rotations de centres respectifs A, B, C et D et d'angle - $\frac{\pi}{2}$.

On pose $f = R_D o R_C o R_B o R_A$, en décomposant chacune des rotations précédentes en deux symétries orthogonales d'axes convenablement choisies, montrer que $f = id_P$.

Propriétés

Soit R une rotation de centre I et d'angle α , on désigne par $S_{\Delta'} \circ S_{\Delta}$ une décomposition quelconque de R. Soient A, B, C et D quatre points deux à deux distincts du plan ; on désigne par A_1 , B_1 , C_1 et D_1 leurs images respectives par S_{Δ} et par A', B', C' et D' leurs images respectives par $S_{\Delta'}$.

- 1) Comparer A'B' et AB.
- 2) Comparer $(\overrightarrow{A'B'}, \overrightarrow{C'D'})$ et $(\overrightarrow{AB}, \overrightarrow{CD})$.

(Propriété 3): Toute rotation conserve les distances

(Propriété 4): Toute rotation conserve les mesures des angles orientés de demi droites.

IV. Propriétés caractéristique d'une rotation

- 1) Soit la rotation $R_{(I,\alpha)}$; M et N deux points distincts du plan d'images respectives M' et N' par R
 - a) Comparer $(\overrightarrow{MN}, \overrightarrow{IM})$ et $(\overrightarrow{IM}, \overrightarrow{M'N'})$.
 - b) Evaluer $(\overrightarrow{MN}, \overrightarrow{M'N'})$

Théorème

Si M' et N' sont les images respectives de deux points distincts M et N par une rotation d'angle α alors :

$$\begin{cases} \mathbf{M'N'} = \mathbf{MN} \\ (\overrightarrow{\mathbf{MN}}, \overrightarrow{\mathbf{M'N'}}) \equiv \alpha [2\pi] \end{cases}$$

2) (Problème inverse)

Soit f une application du plan P dans lui même vérifiant la propriété suivante : quels que soit les points distincts M et N d'images respectives M' et N' par f, on a : $\begin{cases} \mathbf{M'N'} = \mathbf{MN} \\ (\overrightarrow{\mathbf{MN}}, \overrightarrow{\mathbf{M'N'}}) \equiv \alpha \mathbf{[2\pi]} \end{cases}$ où α est un réel donné . On se propose de caractériser f.

1er cas : $\alpha = 2k\pi$, $k \in \mathbb{Z}$

Comparer les vecteurs \overrightarrow{MN} et $\overrightarrow{M'N'}$, que peut on conclure pour f?

$2^{\text{\'eme}} \cos : \alpha \neq 2k\pi, k \in \mathbb{Z}$

Soit A un point du plan d'image A' par f

- Si A = A' vérifier que f est la rotation de centre A et d'angle α .
- On suppose que A \neq A'et on désigne par I l'unique point vérifiant : $\begin{cases} IA' = IA \\ (\overrightarrow{IA}, \overrightarrow{IA}') \equiv \alpha \left[2\pi\right] \end{cases}$

Montrer que f(I) = I et en déduire que f est la rotation de centre I et d'angle α .

Théorème

Soient α un réel donné et f une application du plan dans lui même vérifiant la propriété : pour tous points distincts M et N du plan d'images respectives M' et N' par f on a : $\begin{cases} \mathbf{M'N'} = \mathbf{MN} \\ (\overline{\mathbf{MN'}}, \overline{\mathbf{M'N'}}) \equiv \alpha [2\pi] \end{cases}$

- \triangleright Si $\alpha = 2k\pi$, $k \in \mathbb{Z}$ alors f est une translation.
- \triangleright Si $\alpha \neq 2k\pi$, $k \in \mathbb{Z}$ alors f est une rotation d'angle α .

Théorème (Propriété caractéristique d'une rotation)

Soient α un réel différent de $2k\pi$, $k \in \mathbb{Z}$, et f une application du plan dans lui même.

f est une rotation d'angle α si et seulement si elle vérifie la propriété : pour tous points distincts M et N du plan d'images respectives M' et N' par f on a : $\left\{ \begin{matrix} \mathbf{M'N'} = \mathbf{MN} \\ (\overrightarrow{\mathbf{MN'}}, \overrightarrow{\mathbf{M'N'}}) \equiv \alpha \left[2\pi \right] \right.$

Exercice N°5

Soient I un point du plan et α un réel différent de $k\pi$, $k \in \mathbb{Z}$; M et N deux points distincts de $P \setminus \{I\}$. On désigne par M' et N' les images respectives de M et N par la rotation R de centre I et d'angle α .

- 1) Montrer que les droites (MN) et (M'N') sont sécantes en un point A.
- 2) Montrer que les points I, A, M et M' sont cocycliques ainsi que les points I, A, N et N'.

V. Composée de deux rotations de même centre

Soient I un point du plan et α et β deux réels donnés. On pose $R_1 = r_{(I,\alpha)}$, $R_2 = r_{(I,\beta)}$ et $R = R_2 \circ R_1$

- a) Préciser R(I).
- b) Soit M un point distinct de I, on pose $M_1 = R_1(M)$ et $M' = R_2(M_1)$. Montrer que M' est l'image de M par une rotation que l'on caractérisera. Que peut on conclure ?

Théorème

La composée de deux rotations de même centre est une rotation de même centre et d'angle la somme des angles. Autrement dit : $R_{(I,\beta)}$ 0 $R_{(I,\alpha)} = R_{(I,\alpha+\beta)}$

VI. Image de figures simples par une rotation

On a justifié précédemment que toute rotation se décompose en deux symétries orthogonales ce qui justifie les assertions suivantes :

- \triangleright L'image d'un segment par une rotation est un segment R< [AB] > = [A'B'] avec A'B' = AB.
- L'image d'une droite par une rotation est une droite.
- L'image d'un cercle par une rotation est un cercle.

$$R < C_{(O,r)} > = C'_{(O',r)}$$
 avec $O' = R(O)$.